CONSEJO NACIONAL DE ÁREAS PROTEGIDAS
Secretaría Ejecutiva
Dirección Técnica General

Guatemala, 27 de septiembre de 2013.
Ref. SECONAP

Opinión Conjunta DTG-05-2013

Asumo:

1. ANTECEDENTES

1.1 El 10 de septiembre del 2013, Ventanilla Única del Consejo Nacional de Áreas Protegidas recibe el expediente del proyecto relacionado en el asunto, asignándole el No. 10644.

1.2 El 10 de septiembre del 2013, la Unidad SIG del Departamento de Unidades de Conservación recibe el expediente emitiendo la Providencia SIG-0385-2013 de fecha 19 de septiembre del 2013, conteniendo los Mapas No. 333 A-2013, 333 B-2013 y 333 C-2013.

1.3 El 13 de septiembre del 2013, se sostiene una reunión con representantes de los distintos departamentos que integrarán la opinión solicitada por el MARN.

1.4 El 18 de septiembre del 2013, se sostiene otra reunión con todos los relacionados para integrar insumos a la opinión.

1.5 El 26 de septiembre del 2013, el Departamento de Planeación, Estudios y Proyectos recibe el expediente, proveniente de la Unidad SIG del Departamento de Unidades de Conservación.

2. FUNDAMENTO DE DERECHO

La Constitución Política de la República es la norma máxima del ordenamiento jurídico guatemalteco, y por lo tanto, de ella deben derivarse todas las demás disposiciones legales vigentes y aplicables en el territorio nacional

En ese orden de ideas, y como claramente se refleja en su artículo 1, el Estado de Guatemala se organiza para proteger a la persona.

Esto obedece a la marcada influencia que las doctrinas que abogan por el respeto a los derechos humanos tuvieron sobre el texto constitucional. En tal virtud, la concepción de las obligaciones cuyo cumplimiento se atribuye al Estado, así como los derechos que le asisten a las personas frente a aquel, se debe interpretar ampliamente.

Opinión Conjunta DTG-05-2013 Ref. SECONAP
Página 1 de 31
De esa cuenta, el Estado de Guatemala se obligó en el texto constitucional a mantener el equilibrio ecológico del país (art. 64 y 97), ya que se entiende que un medio ambiente que haya perdido su balance, puede eventualmente afectar la salud de las personas que habitan en él.

Como consecuencia de lo anterior, y en concordancia con lo dispuesto por la misma Constitución, el Congreso de la República de Guatemala, promulgó diversas leyes de carácter ambiental, entre las que se destaca la Ley de Áreas Protegidas.

Esta preocupación por el medio ambiente no es algo nuevo, ya que desde mediados del siglo pasado se alzaron voces dentro de la comunidad internacional, las cuales abogaban por el respeto a la ecología y advertían sobre las posibles consecuencias negativas que el daño al medio ambiente podría traer a la especie humana.

Todo este esfuerzo fructificó en el año 1992, cuando un gran número de estados de la comunidad internacional suscribieron el Convenio sobre la Diversidad Biológica, instrumento que persigue, como su nombre lo indica, preservar la biodiversidad existente en el planeta.

En virtud de lo anterior, la solicitud para construir un puerto comercial, ubicado dentro de los límites de un área protegida, presentada por la entidad ODEPAL, S.A., debe ser analizada dentro del contexto señalado en los párrafos anteriores.

De esa cuenta, y con base únicamente en la información consignada dentro del formulario de evaluación ambiental inicial presentada por la referida entidad y la normativa legal anteriormente referida, se puede determinar que la solicitud para la construcción de un puerto comercial dentro del área protegida REFUGIO DE VIDA SILVESTRE PUNTA DE MANABIQUE, no es viable desde el punto de vista jurídico, ya que violentaría las normas legales vigentes aplicables al área protegida en cuestión, además de constituir una contravención al espíritu de texto de la Constitución Política de la República, la cual declara que la razón de ser del Estado, es garantizar la protección de la persona humana, incluyendo su derecho a gozar de un medio ambiente en equilibrio.

En el ámbito internacional, al permitirse la construcción del puerto ya relacionado, así como el que se tiene proyectado en la costa del Océano Pacífico, Guatemala estaría incumpliendo con los compromisos de Estado que adquiriera al momento de suscribir el Convenio Sobre Diversidad Biológica.

Lo anterior, colocaría a Guatemala en una posición comprometida ante la comunidad internacional, ya que evidenciaria falta de voluntad para cumplir con las obligaciones asumidas hace 21 años, y renovadas el año pasado en la cumbre Río+20.
3. **ANÁLISIS**

3.1. **Ficha Técnica**

<table>
<thead>
<tr>
<th>Nombre del proyecto:</th>
<th>Oficina de Enlace y Negocios para América Latina (ODEPAL) S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Expediente MARN</td>
<td>EAI-853-13</td>
</tr>
<tr>
<td>No. Expediente CONAP</td>
<td>10644</td>
</tr>
<tr>
<td>Instrumento ambiental presentado:</td>
<td>Formulario de evaluación ambiental inicial</td>
</tr>
<tr>
<td>Tipo de proyecto:</td>
<td>Manejo logístico</td>
</tr>
<tr>
<td>Proponente del proyecto (razón social):</td>
<td>ODEPAL</td>
</tr>
<tr>
<td>Representante legal del proyecto:</td>
<td>Guillermo Francisco Catalán España</td>
</tr>
</tbody>
</table>

Ubicación geográfica
- Municipios: Puerto Barrios, Morales y Los Amates (Departamento de Izabal), Gualán, Zacapa y Estanzuela (Departamento de Zacapa), Chiquimula, San Jacinto e Ipala (Departamento de Chiquimula), San Manuel Chaparrón (Departamento de Jalapa), Santa Catarina Mita, Asunción Mita, El Progreso, Jutiapa, Jabeltagua, Conguaco, Moyuta y Pasaco (Departamento de Jutiapa).

Área Protegida en donde se ubica el proyecto, de acuerdo a Providencia SIG-0285-2013 conteniendo los Mapas No. 333A-2013, 333B-2013 y 333C-2013
- Plataforma portuaria en el Océano Atlántico: Refugio de Vida Silvestre Punta de Manabique:
 - Zona de Conservación Terrestre (ZCT),
 - Zona de Recuperación y Manejo (ZRM).
- Corredor: Refugio de Vida Silvestre Punta de Manabique:
 - Zona de Amortiguamiento (ZAM).
 - Atraviesa corredores biológicos, portafolios de vacíos de conservación terrestre.
- Plataforma portuaria en el Océano Pacífico: Zona manglar y áreas protegidas propuestas marino-costeras.

Área del proyecto (dimensiones), de acuerdo a Providencia SIG-0285-2013:
- Plataforma del Atlántico: 2,336.83 Has. (ZCT: 903.92 Has. y ZRM: 1,432.91Has.)
- Corredor: 4,434.50 Has. (316.75Kms x 140mts.)
- Plataforma del Pacífico: 1,628.74 Has.

Categoría en el listado taxativo de proyectos, obras, industrias o actividades (Acuerdo Gub. 134-2005):
El corredor interoceánico es un proyecto atípico, por lo que no aparece dentro del listado, pero algunas de sus actividades son compatibles con diversas de sus actividades que lo categorizan en diferentes niveles de impactos. Por lo que la sumatoria de sus impactos, la magnitud geográfica de emplazamiento del...
3.2 Descripción del proyecto (realizado con base en lo descrito en el expediente):

El proyecto consiste en la construcción de una infraestructura compuesta por una franja terrestre de trescientos setenta y dos (372) kilómetros de largo y ciento cuarenta (140) metros de ancho, entre el océano Atlántico y el océano Pacífico de la República de Guatemala, sobre la cual se construirá un poliducto/oleoducto de cuatro tuberías y un ferrocarril interoceánico para el transporte de contenedores, así como una carretera pavimentada de cuatro carriles, esto se complementará con el establecimiento de líneas de transmisión de energía eléctrica y fibra óptica así como por la creación de parques industriales a lo largo de la zona y con dos complejos portuarios en los extremos del corredor, uno en el Atlántico denominado Plataforma San Jorge que se ubicará en el municipio de Puerto Barrios y otro en el Pacífico denominado Plataforma San Luis en los municipios de Chiquimulilla (Santa Rosa) y Pasaco-Moyuta (Jutiapa).

3.2.1 Las plataformas portuarias contaran con las características siguientes:

i. Cinco muelles de atraque para barcos de la closesuper post panamax, con un total de 2,240 metros lineales de muelle para el atraque de buques. En lo que se refiere al muelle este constará de una tipología estructural de tablero de hormigón de espesor variable. Los pilotes serán de hormigón armado 1.5 metros de diámetro y separados 7.62 metros entre sí y deberán penetrar en el terreno un mínimo de 12 metros de profundidad, quedando una cota de muelle de +3 metros sobre el nivel medio del mar.

Las plataformas contarán con área de explanada para patios de contenedores secos y refrigerados, una terminal ferroviaria y edificios administrativos.

ii. Una dársena de maniobra interna y un canal de acceso con una profundidad de calado de 17 metros.

iii. Instalaciones destinadas a la manipulación de gráneles líquidos (hidrocarburos) donde se ha considerado la opción de implementar una mono boya de acero de 18 metros de diámetro instalada a una profundidad de 25 metros, en la cual se instalará un maniflod el cual se conectará a las cuatro líneas de poliducto a través de líneas submarinas, con una longitud aproximada de 2460 metros en el océano atlántico y 3675 metros en el océano pacífico.

iv. Instalaciones para almacenamiento y bombeo para la carga y descarga de crudo, con capacidad de almacenaje de 203,576 metros cúbicos distribuidos en cuatro tanques.

1 Barcos con calado (profundidad) de hasta 20 metros.
El corredor ferroviario y terminales ferroviarias se desarrollará en la zona sureste del país próxima a la frontera con el Salvador y Honduras, atravesando los departamentos de Santa Rosa, Jutiapa, Jalapa, Chiquimula, Zacapa e Izabal. Donde se ha considerado el trazado de algunos túneles y puentes de longitud importantes en zonas con condiciones orográficas abruptas.

El poliducto consistirá en una tubería enterrada en zanja, con una cama de arena de 15 centímetros de espesor en la parte inferior y superior, el tramo entre ambos puertos discurre paralelo a la línea del ferrocarril con siete estaciones de bombeo en los kilómetros 22, 34, 63, 101, 148, 250 y 339.

3.3 Áreas estimadas del proyecto:

Cuadro No.1. Dimensiones y áreas estimadas del proyecto (según el instrumento ambiental).

<table>
<thead>
<tr>
<th>Medidas del Proyecto</th>
<th>Dimensión (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total del PROYECTO</td>
<td>12,957.00</td>
</tr>
<tr>
<td>Área del corredor</td>
<td>5,194.00</td>
</tr>
<tr>
<td>Plataforma Portuaria Atlántica</td>
<td>478.00</td>
</tr>
<tr>
<td>Plataforma Portuaria Pacífico</td>
<td>504.00</td>
</tr>
<tr>
<td>7 Estaciones</td>
<td>63.00</td>
</tr>
<tr>
<td>4 Parques Industriales</td>
<td>3,506.00</td>
</tr>
<tr>
<td>1 Zona de Transferencia</td>
<td>335.00</td>
</tr>
<tr>
<td>Área de Viviendas y Oficinas</td>
<td>100.00</td>
</tr>
<tr>
<td>Área de Compensación Ambiental Pacífico</td>
<td>727.00</td>
</tr>
<tr>
<td>Área de Compensación Ambiental Atlántico</td>
<td>447.00</td>
</tr>
<tr>
<td>Corredores Ecológicos de Compensación</td>
<td>1,151.00</td>
</tr>
</tbody>
</table>

Cuadro No.2. Actividades a realizar por el proyecto (según el instrumento ambiental).

<table>
<thead>
<tr>
<th>No.</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construcción de un puerto en el océano Pacífico denominado Platoframa San Luis</td>
</tr>
<tr>
<td>2</td>
<td>Operación del puerto en el océano Pacífico denominado Platoframa San Luis</td>
</tr>
<tr>
<td>3</td>
<td>Construcción de un puerto en el océano Atlántico denominado Platoframa San Jorge</td>
</tr>
<tr>
<td>4</td>
<td>Operación del puerto en el océano Atlántico denominado Platoframa San Jorge</td>
</tr>
</tbody>
</table>
3.4 Ubicación SIG:

De acuerdo a Provechencia SIG-0285-2013 y Mapas No. 333A-2013, 333B-2013 y 333C-2013 el proyecto constará en:
- Corredor se ubica entre el océano Atlántico y el Océano Pacífico, con una infraestructura compuesta de 316.75 kilómetros de largo y 140 metros de ancho, siendo un total de 4,434.50 Ha.
- Construcción de plataforma portuaria en el Océano Pacífico, denominada San Luis con un área de 1,628.74 Ha.
- Construcción de plataforma portuaria en el Océano Atlántico, denominada San Jorge con un área de 2,336.83 Ha.

El corredor pasa por 18 municipios y 5 Departamentos, siendo estos: Izabal (Municipios de Puerto Barrios, Morales y Los Amates), Zacapa (Municipios de Gualán, Zacapa y Estanzuela), Chiquimula (Municipios de Chiquimula, San Jacinto e Ipala), Jalapa (Municipio de San Manuel Chaparrón), Jutiapa (Municipios de Santa Catarina Mita, Asunción Mita, El Progreso, Jutiapa, Jalpatagua, Conguaco, Moyuta y Pasaco). (Ver Mapa No. 333A-2013).

<table>
<thead>
<tr>
<th>No</th>
<th>Municipios</th>
<th>Departamento</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Puerto Barrios</td>
<td>Izabal</td>
<td>494.4401</td>
</tr>
<tr>
<td>2</td>
<td>Morales</td>
<td>Izabal</td>
<td>725.8855</td>
</tr>
<tr>
<td>3</td>
<td>Los Amates</td>
<td>Izabal</td>
<td>429.1556</td>
</tr>
<tr>
<td>4</td>
<td>Gualán</td>
<td>Zacapa</td>
<td>396.7960</td>
</tr>
<tr>
<td>5</td>
<td>Zacapa</td>
<td>Zacapa</td>
<td>426.3645</td>
</tr>
<tr>
<td>6</td>
<td>Estanzuela</td>
<td>Zacapa</td>
<td>22.3411</td>
</tr>
<tr>
<td>7</td>
<td>Chiquimula</td>
<td>Chiquimula</td>
<td>251.7135</td>
</tr>
<tr>
<td>8</td>
<td>San Jacinto</td>
<td>Chiquimula</td>
<td>113.0837</td>
</tr>
</tbody>
</table>

Cuadro No. 3. Municipios en los cuales pasa el proyecto y el área que ocuparía.
Además, existen 16 poblados que se encuentran ubicados dentro de los 140 metros de ancho que tendrá el corredor. Los poblados son los siguientes:

Cuadro No. 4. Poblados ubicados dentro del proyecto.

<table>
<thead>
<tr>
<th>No.</th>
<th>Departamento</th>
<th>Municipio</th>
<th>Nombre del Poblado</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JUTIAPA</td>
<td>MOYUTA</td>
<td>EL ZAPOTE</td>
<td>CASERIO</td>
</tr>
<tr>
<td>2</td>
<td>JUTIAPA</td>
<td>JUTIAPA</td>
<td>LAS ANIMAS</td>
<td>SD</td>
</tr>
<tr>
<td>3</td>
<td>JALAPA</td>
<td>SAN MANUEL CHAPARRON</td>
<td>VIVARES</td>
<td>CASERIO</td>
</tr>
<tr>
<td>4</td>
<td>CHIQUIMULA</td>
<td>SAN JACINTO</td>
<td>EL AHORCADO</td>
<td>SD</td>
</tr>
<tr>
<td>5</td>
<td>CHIQUIMULA</td>
<td>SAN JACINTO</td>
<td>TIZUBIN</td>
<td>ALDEA</td>
</tr>
<tr>
<td>6</td>
<td>CHIQUIMULA</td>
<td>CHIQUIMULA</td>
<td>EL CHUCTE</td>
<td>SD</td>
</tr>
<tr>
<td>7</td>
<td>CHIQUIMULA</td>
<td>CHIQUIMULA</td>
<td>EL NANZAL</td>
<td>CASERIO</td>
</tr>
<tr>
<td>8</td>
<td>CHIQUIMULA</td>
<td>CHIQUIMULA</td>
<td>EL MORRAL</td>
<td>ALDEA</td>
</tr>
<tr>
<td>9</td>
<td>ZACAPA</td>
<td>ZACAPA</td>
<td>SAN FELIZ EL VIEJO</td>
<td>CASERIO</td>
</tr>
<tr>
<td>10</td>
<td>ZACAPA</td>
<td>SD</td>
<td>LOMA DEL CHILE</td>
<td>SD</td>
</tr>
<tr>
<td>11</td>
<td>ZACAPA</td>
<td>GUALÁN</td>
<td>GUAYABAL</td>
<td>SD</td>
</tr>
<tr>
<td>12</td>
<td>IZABAL</td>
<td>LOS AMATES</td>
<td>NUEVA NATALIA</td>
<td>CASERIO</td>
</tr>
<tr>
<td>13</td>
<td>IZABAL</td>
<td>MORALES</td>
<td>LOS LAURELES</td>
<td>CASERIO</td>
</tr>
<tr>
<td>14</td>
<td>IZABAL</td>
<td>MORALES</td>
<td>CEMENTERIO</td>
<td>SD</td>
</tr>
<tr>
<td>15</td>
<td>IZABAL</td>
<td>MORALES</td>
<td>SAN ANTONIO</td>
<td>FINCA</td>
</tr>
<tr>
<td>16</td>
<td>IZABAL</td>
<td>PUERTO BARIOS</td>
<td>LUTE</td>
<td>CASERIO</td>
</tr>
</tbody>
</table>

Fuente: Base de datos de la capa digital de centros poblados. IGN 2002. SD = Sin Dato

Los poblados de acuerdo el límite municipal, son una referencia, tomada de la cartográfica digital básica del ING/MAGA, y pueden no corresponder a los límites legales que registra cada municipio.
En el análisis de vacíos terrestres y corredores ecológicos, Guatemala se enmarca en el esfuerzo nacional de análisis de los vacíos de representatividad ecológica y/o conservación del SIGAP, impulsado por el Acuerdo NISP, a partir del año 2006. Para junio de 2009, se ha completado el análisis de vacíos de conservación de sistemas terrestres. Esta información permite ampliar el análisis del impacto del proyecto, desde un punto de vista más integral.

La información de vacíos terrestres y áreas protegidas, permitió determinar que dentro de los municipios en los cuales pasará el proyecto, existen áreas protegidas, corredores ecológicos y vacíos terrestres que serán influenciados. Entre las áreas que tendrán influencia por el proyecto son: zonas identificadas como portafolios y corredores ecológicos, además de varias categorías de áreas protegidas, distribuidas de la siguiente manera: un monumento cultural, dos parques nacionales, tres parques regionales, cinco reservas naturales privadas, ocho zonas de veda y cuatro áreas de protección especial. En la zona sur donde se ubicara la plataforma portuaria del Pacífico, existe una propuesta de área protegida marino costero. (Ver Mapa 233C-2013).

De acuerdo al análisis de vacíos terrestres, se identificó que el proyecto atravesará por dos corredores biológicos y cuatro portafolios, que son áreas que permiten la interconexión ecológica entre las áreas protegidas. En el siguiente cuadro se mencionan los corredores biológicos y portafolios que serán atravesados por el trazo del corredor interoceánico:

Cuadro No. 5. Vacíos Terrestres y corredores biológicos que atraviesan el corredor

<table>
<thead>
<tr>
<th>No.</th>
<th>Nombre de Vacios Terrestres y Corredores Biológicos</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corredor Biológico Sierra de las Minas - Trifinio</td>
<td>31.4136</td>
</tr>
<tr>
<td>2</td>
<td>Corredor Biológico Sierra de la Minas - Cerro Cumbre del Pital / Cerro del Burro / Cerro del Carmen</td>
<td>149.8108</td>
</tr>
<tr>
<td>3</td>
<td>Portafolio 2007 Cerro Cumbre del Pital - Cerro del Burro - Cerro del Carmen</td>
<td>65.8198</td>
</tr>
<tr>
<td>4</td>
<td>Portafolio 2007 El Astillero</td>
<td>61.7259</td>
</tr>
<tr>
<td>5</td>
<td>Portafolio 2007 Matorral Espinoso Este</td>
<td>249.6891</td>
</tr>
<tr>
<td>6</td>
<td>Portafolio 2007 Matorral Espinoso Oeste</td>
<td>165.8481</td>
</tr>
<tr>
<td>7</td>
<td>Refugio de Vida Silvestre Punta de Manabique</td>
<td>86.6656</td>
</tr>
</tbody>
</table>

Fuente: CONAP, 2006

Respecto al Sistema Guatemalteco de Áreas Protegidas (SIGAP), la plataforma portuaria del Atlántico denominada San Jorge, con un área calculada de 2,336.83 ha, se encuentra dentro del Refugio de Vida Silvestre Punta de Manabique (RVSPM) distribuidas en dos zonificaciones:

Cuadro No. 6. Área de cobertura de plataforma Atlántico por tipo de zonificación del SIGAP

<table>
<thead>
<tr>
<th>No</th>
<th>Zonificación RVSPM</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zona de Conservación Terrestre</td>
<td>903.92</td>
</tr>
<tr>
<td>2</td>
<td>Zona de Recuperación y Manejo</td>
<td>1,432.91</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,336.83</td>
</tr>
</tbody>
</table>

Opinión Conjunta DTG-05-2013 Ref. SECONAP
Página 8 de 31
www.conap.gob.gt
La plataforma portuaria del pacífico denominada San Luís con un área de 1,628.74 ha, se encuentra dentro de la propuesta de área protegida marino costera “El Maguey – Barra del Jute”, abarcando un área de 724.85 ha que equivale al 44.50 % del total del área de la plataforma. (Ver Mapa 333B-2013).

En relación al corredor interoceánico, el trazo del trayecto de 140 metros de ancho que conectará los dos océanos, pasará por el área protegida Zona de Veda Definitiva Volcán Culma, abarcando un área de 14.36 ha del área protegida. También pasa por el área protegida Refugio de Vida Silvestre Punta de Manabique en la zona de amortiguamiento, abarcando un área de 45.66 ha y en la zona de recuperación y manejo con un área de 86.66 ha.

La infraestructura vial nacional principal que atraviesa el proyecto, está determinada por la carretera CA-1, CA-2 y CA-10 dentro de las principales; mientras que los ríos que serán influenciados están: Río Motagua, estimándose que dentro de los 140 metros de ancho que tendrá el corredor pasara por 58 ríos permanentes, un río intermedio y 94 ríos temporales distribuidos en las vertientes del Caribe y el Pacífico, ubicadas principalmente dentro de cinco cuencas: Río Grande de Zacapa, Río Motagua, Río Paz, Río los Esclavos y Río Ostúa Guíja. (Anexo 3).

Respecto a la cobertura boscosa según la dinámica de la cobertura forestal 2006 – 2010 realizada por el INAB, se determinó que el ancho de 140 metros del corredor interoceánico afectará directamente 96.12 hectáreas de bosque. Mientras que la ubicación de las plataformas portuarias afectaría 1,316.97 ha de bosque de la del Atlántico y 380.25 ha de bosque del Pacífico.

En base al mapa de cobertura de mangle 2012 elaborado por CATHALAC-MARN, se determinó que la cobertura boscosa de mangle que afectaría el proyecto es de 58.95 hectáreas en la plataforma portuaria de la costa del Atlántico y 320.39 hectáreas en la plataforma portuaria del Pacífico. En el expediente se menciona (Mapa folio 20 reverso) que el área de cobertura de mangle que afectará la plataforma portuaria del Pacífico es de 207.33 ha, pero según los datos estimados por la Unidad de SIG subestiman la cantidad afectada, existiendo una diferencia de 113.06 ha. En la plataforma del Atlántico, no se presenta datos de área de mangle afectado. (Anexo 2 y 3)

Las áreas mencionadas en el expediente (FOLIO 23) no corresponden al área que se ha calculado por parte de la Unidad de SIG de CONAP, según cálculos realizados en base a coordenadas presentadas en el mismo expediente (FOLIO 13, 20, 26, 27). (1) En el caso de la Plataforma del Pacífico se menciona un área de 504 ha, mientras que lo calculado en base a las coordenadas presentadas es de 1,628.74 ha, existiendo una diferencia de 1,124.74 ha; (2) en el caso de la costa del Atlántico se menciona un área de 478 ha, y en la unidad de SIG se calculó un área de 2,336.89 ha, existiendo una diferencia de 1,858.89 ha.

Se realizó una estimación del uso de la tierra que sería afectado por la construcción del corredor interoceánico, que menciona un ancho de 140 metros. Resultados de este análisis en base al mapa de uso de la tierra 2006 de ING-MAGA se presentan en el cuadro 7.
Cuadro No 7. Usos de la tierra que serían cambiados por el proyecto

<table>
<thead>
<tr>
<th>No.</th>
<th>Tipos de usos de la tierra</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Árboles dispersos</td>
<td>779.92</td>
</tr>
<tr>
<td>2</td>
<td>Área de ruinas</td>
<td>1.36</td>
</tr>
<tr>
<td>3</td>
<td>Área Densamente edificada.</td>
<td>27.92</td>
</tr>
<tr>
<td>4</td>
<td>Arena húmeda.</td>
<td>8.65</td>
</tr>
<tr>
<td>5</td>
<td>Bosque de coníferas mezcladas con árboles caducifolios</td>
<td>330.86</td>
</tr>
<tr>
<td>6</td>
<td>Campo de fútbol</td>
<td>2.12</td>
</tr>
<tr>
<td>7</td>
<td>Cementerio</td>
<td>2.32</td>
</tr>
<tr>
<td>8</td>
<td>Claros</td>
<td>2040.86</td>
</tr>
<tr>
<td>9</td>
<td>Ferias, parques de diversión, campos de golf</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>Lago Intermitente</td>
<td>0.47</td>
</tr>
<tr>
<td>11</td>
<td>Lago Perenne</td>
<td>1.53</td>
</tr>
<tr>
<td>12</td>
<td>Matorral o monte bajo</td>
<td>1389.98</td>
</tr>
<tr>
<td>13</td>
<td>Pantano</td>
<td>47.30</td>
</tr>
<tr>
<td>14</td>
<td>Plantación, huerto y vivero</td>
<td>9.46</td>
</tr>
<tr>
<td>15</td>
<td>Río Perenne, mayor de 25 metros de ancho</td>
<td>10.08</td>
</tr>
<tr>
<td>16</td>
<td>Terreno sujeto a inundación natural</td>
<td>47.75</td>
</tr>
</tbody>
</table>

Fuente: Base de datos de la capa de uso de la tierra. IGN-MAGA. 2006
Ver anexos figura 3 y 4, que representan mapas de la cobertura forestal.

3.5 Análisis de impactos

I. **SISTEMA HÍDRICO (AGUA):** la ejecución de este proyecto utilizaría altas cantidades de agua, por lo que se debe analizar su abastecimiento racional para no generar escases en las poblaciones del área de influencia directa de la construcción y de no propiciar secar fuentes de agua y contaminarlas, además de contaminar el suelo con aguas residuales provenientes de la lechada del concreto, que también pueden afectar el suelo.

II. **SISTEMA EDÁFICO (SUELO):** los movimientos de tierra y los cambios del uso del suelo pueden coadyuvar al aumento de riesgos de deslizamientos, eliminar la recarga hídrica aumentar la erosión y la sedimentación de fuentes de agua.

El material a utilizar para la construcción de las carreteras, provenientes de canteras, que se presume que estas no están dentro del tramo de los 140 metros de ancho del proyecto; esto originaría tala de árboles, afectación de los recursos de agua, biodiversidad, cambio morfológico de la topografía, de la estructura física y uso del suelo; fuera del área de emplazamiento del proyecto.

Los movimientos de tierra que el proyecto ejecutara para la construcción de todas las obras de ingeniería, en áreas terrestres y marina, deben de tener un lugar en donde disponerlos, sin afectar otras áreas. Estos pueden causar sedimentación de fuentes de agua, entre otros impactos.
III. SISTEMA ATMOSFÉRICO (Aire): la polución durante la construcción puede aumentar contaminación del aire y acelerar el cambio climático existentes, generando el aumento de enfermedades respiratorias y pérdida de calidad de vida. Al mismo tiempo, la acumulación de contaminación adicional puede causar problemas en la salud y el bienestar.

IV. SISTEMA BÍOTICO:

Diversidad Biológica: La propuesta presenta información relativa a infraestructura, monitoreo de inversión, generación de empleo, extensiones, proyectos de biocultivo, etc. Sin embargo, no se menciona el impacto que generará en la biodiversidad de la zona protegida donde planea desarrollar la plataforma Mar del Plata en el Atlántico.

Las áreas protegidas han sido concebidas con el fin de conservar la diversidad biológica del país, por lo que las actividades a desarrollarse dentro de la Zona Protegida deben tener coherencia con este objetivo.

En el Relámpago de Vida Silvestre Punta de Manabique, se alberga una variedad de especies de aves, reptiles, mamíferos y flora, constituyendo un valioso recurso natural que debe ser protegido.

El objetivo del proyecto es la conservación de estas especies, no la destrucción. Por lo tanto, se deben implementar medidas para minimizar el impacto sobre la biodiversidad.

- Conservar los ecosistemas que conforman el bosque amazónico, los sistemas de agua dulce y salada, los manglares, las playas y desembocaduras de ríos principales. Y el sistema marino que rodea a estas zonas.
- Realizar investigaciones sobre la reproducción y el ciclo vital de especies representativas de la biota local, de los ecosistemas del Océano Atlántico.
- Producir oportunidades para el desarrollo de actividades educativas, recreativas y turísticas.
- Reducir el impacto sobre la vida silvestre y el ecosistema local.

Por lo anterior, es necesario identificar los impactos que un proyecto de tal magnitud generaría en el área. A primera vista se puede hablar de fragmentación, como lo es el caso del Jaguar, Rapp y Manati, afectando la movilidad, desplazos y reproducción de las especies en riesgo. Es importante realizar estudios y monitoreo para determinar los resultados justo después de iniciar los trabajos.

En el instrumento de evaluación se plantea desarrollar programas de conservación para algunas especies y grupos taxonómicos como aves y reptiles, pero no se mencionan las acciones concretas que podrían ejecutarse en función de los impactos que generará el proyecto.

En general, para la flora y fauna se considera que un proyecto de este tipo podría generar una pérdida de biodiversidad en distintos niveles, desde individuos hasta especies, hasta vertebrados mayores. Ya que los proyectos en áreas protegidas deben ser acordes con la conservación de la biodiversidad.
los objetivos de un área protegida, sería de altísima importancia, que el usuario indicara los beneficios que aportará el proyecto a la biodiversidad del área.

La propuesta del corredor interoceánico presenta información relativa a infraestructura, montos de inversión, generación de empleo, extensión del proyecto y sonificación del mismo; sin embargo, no se contemplan los posibles impactos en la diversidad biológica y en áreas protegidas a ser intervenidas por el proyecto, como por ejemplo la plataforma San Jorge en el Atlántico y en el trazo que se estipula tendrá hacia la plataforma San Luis en el Pacífico.

Un proyecto de la magnitud que tiene el corredor interoceánico guatemalteco, cuya propuesta contempla conectar los dos océanos del país por medio de una carretera y un oleoducto, tendrá diferentes impactos negativos a la vida silvestre del país.

Estos impactos pueden evaluarse en dos niveles. El primero es la transformación de espacios naturales en áreas protegidas que es el caso de El Refugio de Vida Silvestre Punta de Manabique, que es el hábitat de diversas especies de aves, mamíferos, reptiles, anfibios, peces e invertebrados que utilizan el área como refugio, zona de alimentación, reproducción y cuyas poblaciones dependen totalmente de estos espacios naturales para cumplir con sus ciclos biológicos. Dos de los objetivos del Refugio de Vida Silvestre Punta de Manabique son (CONAP, 2006):

- Conservar los ecosistemas que conforman el bosque anegado, los sistemas de agua dulce y salobre, los manglares, la playa y desembocaduras de ríos principales, y el sistema marino integrado, el cual permita los procesos reproductivos de migración y crecimiento tales como los arrecifes de coral y los pastos marinos.
- Proveer oportunidades para el desarrollo de actividades de investigación, educativas, recreativas y turísticas controladas y de bajo impacto.

Si se observan estos objetivos, es claro que la construcción del corredor interoceánico en esta zona interferirá con el cumplimiento de los mismos. El segundo nivel de impactos a la vida silvestre tiene escala biogeográfica y trasciende a las áreas protegidas. Para comprender mejor este punto, es necesario tener en cuenta que después de la colisión del meteorito que originó el cráter de Chicxulub en la península de Yucatán hace aproximadamente 65 millones de años y que extinguiera a los dinosaurios, el evento geológico más importante a escala global, fue el cierre del puente centroamericano hace aproximadamente 3 millones de años, que permitió que la flora y fauna de Norte y Sur América, que estuvieron aisladas durante millones de años cruzaran en ambas direcciones (Coates, 1999). Es decir, con la apertura del corredor interoceánico, este puente natural entre las dos masas continentales del norte y del sur, establecido naturalmente durante el final del Plioceno e inicio del Pleistoceno será interrumpido para muchas especies terrestres, especies como el Tapir, Manati y jaguar podrían verse seriamente afectadas con la construcción de esta mega obra (UCNH, 2013; CONAP 2009).

"El corredor para jaguares en Izabal es un área geográfica que se ubica en toda la franja norte del departamento de Izabal. Dicha área es de gran importancia para la conservación del jaguar a largo plazo, especie amenazada en el país, ya que actualmente es un área que está funcionando como un
corredor para el movimiento de las poblaciones regionales de jaguares en Guatemala. Recientes estudios muestran que esta región es un área clave para la conectividad de las poblaciones de jaguar a nivel mesoamericano, favoreciendo la conectividad entre las poblaciones guatemaltecas con las de los países aledaños: Honduras y Belice. Sin embargo la importancia del Corredor para jaguares va más allá de esta especie en particular, ya que se han documentado diversas especies de mamíferos que habitan esta región, entre ellas el jabali, coche de monte, venado cola blanca, cabrito, tepezuientle, cotuza, entre otros [Calderón, 2013], todas ellas presas del jaguar.

De la misma forma deberá evaluarse si la construcción de dicho proyecto involucrará la remoción de áreas boscosas y humedales, ya que estos hábitats son determinantes para la presencia del jaguar y sus presas [Calderón, 2013].

- Diversidad Biológica, Ecosistemas marino-costero:

 a) Golfo de Honduras -GOH-

El litoral de Guatemala presenta una línea costera con una longitud total de 403 km y un área de aproximadamente 7.365 km², de los cuales 149 km² corresponden al litoral sobre el Mar Caribe [P-GOH, 2011]. La sección correspondiente al litoral Atlántico forma parte fundamental del Golfo de Honduras -GOH-, el cual incluye a su vez la costa Atlántica de Honduras desde la frontera con Guatemala hasta Triunfo de la Cruz (Pueblo cerca de la ciudad de Telé), y en Belice incluye el área desde Placencia y Gladden Spitt hasta los Cayos Zappodilla y Rio Sarstun (Figura 1).

El GOH funciona como un sistema de hábitats tales como bosques perennes, pantanos, bosques de manglar, praderas de pastos marinos, arrecifes coralinos, y mar abierto. Estos ecosistemas están interconectados, y dependen íntimamente el uno del otro. La mayoría de especies marinas, entre ellas las especies de importancia comercial y ecológica, necesitan a la mayoría, sino es que a todos estos ecosistemas durante las diferentes etapas de su vida, lo que implica que esta interconectividad de ecosistemas es vital para la salud de las diferentes especies marinas, y por ende la industria pesquera de nuestro país [Heyman y Graham, 2000].
b) Ecosistema manglar

Los manglares representan bosques costeros característicos de las zonas estuarias, así como de los bancos de los ríos y de las lagunas de las regiones tropicales y subtropicales; y están representados por una familia de las plantas adaptadas a la vida en la zona intermareal. Este ecosistema representa una interfase entre las comunidades marinas y terrestres, recibiendo aportes de aguas oceánicas y aportes de agua dulce, sedimentos y nutrientes (P-GOH, 2011).

La cobertura actual de mangle en el país es de aproximadamente 18,840.08 ha., con 17,670.56 ha. en la Costa del Pacífico y 1,169.52 ha. en la Costa del Caribe; esto equivale al 0.0017% del territorio nacional. De las 17,670.56 ha. de mangle en Pacífico, aproximadamente 3,095.09 ha. se encuentran en áreas protegidas, equivalente al 17.5% del total. De las 1,169.52 ha. de mangle en el Caribe aproximadamente 1,031.5 hectáreas se encuentran dentro de áreas protegidas, lo que equivale al 88.2% de los manglares en el Atlántico de Guatemala (MARN, 2013).

1 Informe técnico: Estudio de la cobertura de mangle en la República de Guatemala. Guatemala. 54 pag.
Opinión Conjunta DTG-05-2013 Ref. SECONAP
Página 14 de 31
www.conap.gob.gt
El estado de conservación de estas especies según la Lista de Especies Amenazadas de Guatemala establece que se encuentran categorizadas en el índice II, debido a que su área de distribución natural corresponde a ecosistemas restringidos, delimitando su uso para fines científicos o de reproducción y con fines comerciales, únicamente a través de planes de manejo forestal que garanticen la sobrevivencia de la especie (CONAP, 2009); así mismo, la legislación nacional establece en el Decreto 101-96, Ley Forestal, artículo 35, que se declara de interés nacional la protección, conservación y restauración de los bosques de mangle en el país, quedando prohibido el cambio de uso de la tierra en estos ecosistemas.

Los manglares son la fuente principal de abastecimiento de nutrientes en las cadenas tróficas costeras y estuarinas (P-GOH, 2011), además de actuar como criaderos para muchas especies de peces, moluscos y crustáceos, y hábitat para varias especies de mamíferos, reptiles, anfibios y aves (P-GOH, 2011). Varios estudios científicos han demostrado que la biomasa de varias especies de importancia comercial se duplica cuando existe una presencia de bosques de mangle (P-GOH, 2011).

Los manglares contribuyen significativamente a la productividad del GOH (P-GOH, 2011). El ecosistema manglar juega un rol fundamental en los ambientes y comunidades costeras, teniendo varias funciones físicas y ecológicas, aportando los siguientes beneficios intangibles:

- Estabilizando los sedimentos y previniendo la erosión de los suelos.
- Refugio y hábitat de diversa fauna silvestre, especialmente la avifauna.
- Efecto sumidero de nutrientes y la reducción de cantidades excesivas de contaminantes.
- Recolección de sedimentos de escorrentía de tierras altas, con la protección consiguiente de los arrecifes próximos a la costa y reducción de la turbidez del agua (Rodríguez Crespo, 2003).
- Protegen la zona costera de inundaciones, de la erosión del oleaje y el viento, de las corrientes, de los huracanes, ciclones y de las tormentas tropicales, sustentando a los ecosistemas marinos adyacentes (P-GOH, 2011; World Resources Institute, 2005. Ver figura 2).
Figura 2. Conectividad de ecosistemas entre los bosques de Manglar, praderas de pastos marinos, y arrecifes coralinos (Fuente: Marine Spatial Ecology Lab, University of Queensland, Australia; http://www.marinеспatialecologylab.org/research/fish-ecology/).

Así también, en los intentos de valoración económica de los manglares se identificaron siete beneficios, cuya importancia dependerá de la zona específica de manglares que se trate: mantenimiento de pesquerías locales; mantenimiento de pesquerías costeras o de altura; fuente de recursos no pesqueños; captura y almacenamiento de carbono con efectos globales; reducción de daños causados a la población por eventos meteorológicos extremos; conservación de la biodiversidad y contención de la erosión costera (Rodríguez Crespo, 2003 citó a Muñoz, 1994).

Rodríguez Crespo, 2003\(^3\) afirma que actualmente son pocos los países de América Latina que reconocen estos beneficios actualmente, en efecto los ecosistemas han sido objeto de un acelerado deterioro con el fin de obtener sus recursos directos, amenazando con su aprovechamiento la integralidad del ecosistema de los que son parte. En Centroamérica se tienen estimaciones de la degradación anual de cobertura para Guatemala (560 has), Nicaragua (385 has) y Costa Rica (45 has), en su mayoría para conversión en arrozales, salitrerales y maricultura (Rodríguez Crespo, 2003).

Opinión Conjunta DTG-05-2013 Ref: SECONAP
Página 16 de 31

www.conap.gob.gt
El ecosistema manglar se constituye en el más frágil a ser intervenido por el proyecto, Guatemala junto a México, según algunos investigadores, constituyen los países que poseen el menor porcentaje ocupado respecto al territorio nacional en el continente americano (Rodríguez Crespo, 2003). En la actualidad estos ecosistemas presentan focos de deterioro por exceso de salinidad y falta de nutrientes en los coloides del suelo, debido a la construcción de sistemas hidráulicos de grandes embalses y canales derivadores, que impiden la llegada periódica normal, al ecosistema del manglar, de las aguas de avenidas de los ríos y arroyos (Rodríguez Crespo, 2003 citó a: Alvarez, 2000).

La propuesta establece lacónicamente que en la etapa de inicio del proyecto será necesaria la eliminación de cobertura forestal del ecosistema manglar, asimismo proponen la recuperación de la masa boscosa (que no implica la recuperación/restauración del ecosistema) en un área de 160 hectáreas. Tampoco se indica la localización de los ecosistemas que serán intervenidos, ni superficie, ni especies forestales.

La plataforma portuaria en las costas del océano atlántico se encuentra localizada dentro del área protegida Refugio de Vida Silvestre Punta de Manabique, en las Zonas de Conservación Terrestre (38.62%, con una cobertura de 46.69 has. de la especie Rhizophora mangle) y en la Zona de Recuperación y Manejo (61.37%, con una cobertura de 12.25 has. de la especie Rhizophora mangle) (MARN. 2013). Su establecimiento tiene implícito el cambio de uso de la tierra no solamente en áreas con cobertura de mangle, sino, para toda la cobertura de bosque, que de acuerdo al estudio “Dinámica de la cobertura forestal de la República de Guatemala 2006-2010” (UVG; CONAP; INAB; URL, 2011), asciende a 1,393.67 Has. dentro del perímetro de la plataforma.

La eliminación de la cobertura boscosa por cambio de uso de la tierra es una actividad antagónica con los objetivos del área protegida así como con sus zonas de manejo. El Plan Maestro del área protegida norma para la Zona de Conservación Terrestre el uso exclusivo para conservación y bajo ningún aspecto ser objeto de intervención a ninguna escala, esto entre otras restricciones y para la Zona de Recuperación y Manejo es permisible el manejo forestal sostenible así como el establecimiento de infraestructura para la vivienda únicamente para comunidades ya establecidas, restringiendo el establecimiento de infraestructura para otros objetivos (FUNDARY, CONAP, TNC. 2006), ver figura 3.

La cobertura vegetal en la costa del atlántico es característica de la zona de vida bosque muy húmedo Tropical (bmb-T), dentro del la Reserva de Vida Silvestre, Punta de Manabique. Existe presencia de tres grupos básicos de vegetación. En los esteros se identificó la comunidad de mangle rojo (Rhizophora mangle), en las playas y lagunas litorales se localizaron comunidades de icaco (Chrysobalanus icaco) y árbol de la cera (Myrcia cerifera); por último, en el bosque anegado se han identificado comunidades de San Juan (Vochysia hondurensis), Cecropia (Spondias sp.), Palo sangre (Pterocarpus officinalis) (FUNDARY, CONAP, TNC. 2006 citó a: EER, 2,001).

Asimismo se han identificado otras comunidades vegetales que constituyen la cobertura boscosa, tales como: Guarumo (Cecropia spp.), Madre cacao (Gliciridia sepium), Palo jote (Bursera sp.), Jocote (Spondias sp.), palo sangre o cahue (Pterocarpus officinalis), barillo (Symphonia globulifera), zapote

Figura No. 3. Cobertura boscosa (bosques latifoliados) y cobertura bosque manglar, dentro de la Plataforma portuaria San Jorge, océano atlántico.

Fuente: UVG, CONAP, INAB, URL. 2011; MARN. 2013

La **plataforma portuaria en las costas del océano pacífico** se encuentra localizada dentro de un área que posee 320.39 hectáreas de cobertura de bosque que constituye el ecosistema manglar de la zona (MARN, 2013) y representa más del 90% de la cobertura forestal (UVG; CONAP; INAB; URL, 2011) dentro de su perímetro, la vegetación es característica del Bosque húmedo subtropical cálido bh-5 (c). Las especies de mangle corresponden a mangle rojo (*Rhizophora mangle*) con una
extensión de 129.51 has. y mangle blanco (*Laguncularia racemosa*) con una extensión de 190.88 has.

Figura No. 4. Cobertura bosque manglar, dentro de la Plataforma Portuaria San Luis.
Fuente: UVG, CONAP, INAB, URL, 2011; MARN, 2013

c) Arrecifes Coralinos

Los arrecifes coralinos son comunidades someras de aguas tropicales y subtropicales con complejas interrelaciones entre las especies, y representan uno de los ecosistemas más biodiversos del planeta, soportando más de 800 especies de corales duros, y más de 4,000 especies de peces. Estudios han demostrado que más del 25% de las especies marineras dependen de estos ecosistemas como fuente
de alimento y refugio, mientras que del 9-12% de la pesca mundial está asociada directamente con los arrecifes coralinos (Spalding y Ravilious, 2001; Wilkinson, 2008).

Estas comunidades viven comúnmente en zonas oligotróficas, con un rango relativamente pequeño de salinidad y temperatura, y tienden a crecer en temperaturas y salinidades cercanas a los límites de tolerancia para los corales que la conforman; en consecuencia son especialmente sensibles a pequeños cambios en la salinidad y la temperatura. Además de su vulnerabilidad a estos cambios, las comunidades arrecifales son sensibles a efectos antrópicos sistematizados (el turismo, por ejemplo) o accidentales (derrames de petróleo, alta sedimentación) (P-GOH, 2011).

En el Mar Caribe Occidental se encuentra uno de los sistemas arrecifales más extenso del mundo el denominado Sistema Arrecifal Mesoamericano -SAM-. (Figura 3). Este sistema abarca desde la costa caribeña de Yucatán (en México) hasta las Islas de la Bahía (en Honduras); es decir, unos 22,800 km² que representan la segunda barrera arrecifal más grande del mundo. Guatemala presenta un serie de parches arrecifales coralinos a lo largo de la costa del Mar Caribe, ubicados frente a la Punta Manabique. Estos parches están dominados por corales resistentes a la sedimentación tales como ciertas especies de *Siderastrea siderea* que conforman comunidades aisladas y parches pequeños pero altamente biodiversos (Figura 4) (Wilkinson y Souter, 2008; Programa de Liderazgo SAM, 2013).

Los arrecifes coralinos han sostenido poblaciones humanas de las zonas tropicales por cientos de miles de años. Entre los principales beneficios se pueden mencionar los elevados rendimientos pesqueros como fuente de ingresos y como una importante fuente de nutrición para más de 2 millones de personas en las comunidades costeras del SAM (Burke y Maidens, 2005; Healthy Reefs Initiative, 2012). Algunas de las especies de interés comercial, características de este sistema, son invertebrados como la langosta (*Panulirus argus*), el caracol (*Strombus gigas*), el cangrejo (*Caliopeus sp.*) y peces como el sábalo (*Megaleps atlantica*), el mero (*Epinephelus sp.*), los pargos de la familia Lutjanidae o la sierra de la familia Scombridae.

Figura 5. Sistema Arrecifal Mesoamericano -SAM-, abarcando más de 1,000 km y ubicado en México, Belice, Guatemala y Honduras

La sobrecarga de nutrientes y la alta sedimentación son dos de las amenazas más directas sobre estos ecosistemas. Las aguas residuales, escorrentías de tormentas, deforestación, fertilizantes, descargas industriales, sedimentación causada por el dragado costero, entre otras, están entre los mayores contribuyentes al daño al arrecife coralino, lo que resultaría en la pérdida de miles de colonias vitales para el sustento de millones de personas que dependen de los recursos marino-costeros (Williams y Bunkley-Williams, 2000).

d) Playas

Las playas tropicales son formaciones sedimentarias asociadas a sistemas de baja energía de oleaje (debido a los dóbiles vientos predominantes, de 3,0 a 8,0 m/s; Heyman y Kjerfve, 2000). En litoral del caribe guatemalteco, 90 km corresponden a playas. Ecológicamente, este es el único ambiente ocupado por animales que están adaptados al movimiento constante de la arena.

Muchas especies de aves, de peces, de reptiles y de otros animales utilizan estos ecosistemas como sitios de anidamiento, de cría y de alimentación; un ejemplo son las tortugas marinas (tortuga verde, tortuga parlama, tortuga baule, tortuga carrey y tortuga cabezon o caguama) que utilizan estos sistemas para depositar sus huevos durante una determinada época del año (Muccio et. al., 2009).

El mal uso de las playas potencia las tasas de erosión y acreción de estos ecosistemas. Por otra parte, la construcción de infraestructuras tales como muelles o puertos, pueden afectar la dinámica natural del transporte de sedimentos y ocasionar problemas de erosión y pérdida de playas (P-GOH, 2011).

e) Corrientes

Para Puerto Barrios y Santo Tomás de Castilla los oleajes que pueden crear corrientes apreciables (oleajes mayores de 0,5 m de altura) son los de altura 1,5 metros y dirección 67,5º. En cuanto a los vientos, los de mayor frecuencia son los de 4,0, 5,0 y 6,0 m/s de dirección 67,5º. Craig (1966), a partir de diversas observaciones, describió la "Corriente del Caribe" como un flujo de dirección Norte-Oeste en áreas lejanas a la costa, un flujo hacia el Sur a lo largo del arrecife mesoamericano y de la zona comprendida entre éste y la costa, y una circulación ciclónica en el área del Golfo de Honduras (Figura 6).

Dicha flujos son más pronunciados durante los meses de invierno en el hemisferio Norte, cuando la denominada "Zona de Convergencia Intertropical" (ITCZ, por sus siglas en inglés) cambia hacia el Sur y los vientos del NE se intensifican (Heyman y Kjerfve, 2000). En el 2005, Ezer et. al, en el marco del proyecto 'World Ocean Circulation Experiment', demostró que la circulación local – inducida por el viento – puede ser descrita como una corriente costera dirigida hacia el Sur que puede persistir durante la mayor parte del año pero que, en ciertas ocasiones (particularmente durante los meses de verano en el hemisferio Norte) puede llegar a revertirse (orientándose hacia el Norte) (Figura 7).

Estos flujos permiten tener una visión amplia de los patrones de corrientes y mezcla de aguas entre la costa y los diferentes ecosistemas marinos. También nos permite aseverar que la ecorregión del SAM es un sistema interconectado de hábitats críticos y frágiles, y que amenazas derivadas de la
sobrepesca, contaminación, y proyectos de alto impacto podrían perjudicar directamente a millones de personas que dependen de estos ecosistemas para su diario vivir.

Opinión Conjunta DTG-05-2013 Ref. SECONAP
Página 23 de 31
Figura 9. Trayectoria de boyas a la deriva lanzadas en el marco del Proyecto ‘World Ocean Circulation Experiment’ (Fuente: Ezer et. al., 2005).

V. SOCIAL ECONOMICO Y CULTURAL: un proyecto de esta magnitud, puede generar conflictos sociales, además de realizar cambios importantes a la economía de las poblaciones del área de influencia. Dentro de los posibles impactos se pueden identificar migración de personas, nuevos asentamientos que si no están planificados, estos pueden convertir en generadores de impactos negativos al ambiente, a la sociedad y al proyecto per se.

Los aparentes beneficios económicos que este proyecto generaría al país se deben identificar desde una evaluación social y económica del proyecto, identificar los precios “sombra” y sus beneficios en relación a los costos que el SIGAP y la biodiversidad biológica dejarían de percibir, en financiamiento y en costo de oportunidad en función de conservar los ecosistemas a intervenir y por tener que ceder a la ejecución y operación de un proyecto de esta magnitud.
Es importante calcular adecuadamente la cantidad de generación, tipo de desechos sólidos generados, lugar de generación, lugar de tratamiento, tipo de tratamiento y tipo de infraestructura a implementar.

Además, el proyecto se sustenta con la concordancia del plan de uso del suelo (según el instrumento ambiental presentado) con los planes de gobierno entre ellos con el Plan de Acción de la Región Noroeste de Guatemala para el 2015, además indican que el mismo es una Alianza Público Privada.

4. CONCLUSIONES

- La implementación del proyecto, tal y como se encuentra plantead, contraviene las leyes y normas nacionales, así como los convenios internacionales que Guatemala ha adquirido colocando al país en una situación comprometadora ante la comunidad internacional.

- El proyecto, específicamente la Plataforma Portuaria San Jorge, ubicada en el océano atlántico y dentro del Refugio de Vida Silvestre Punta de Manabique, contraviene los objetivos de su ley de declaratoria como área protegida (Decreto No. 23-2005 del Congreso de la República) en virtud de lo siguiente:

 a) En contravención al primer objetivo su implementación alteraría la integralidad de los ecosistemas afectando a los procesos ecológicos inherentes a su estructura específica, esto en detrimento de su capacidad de producir bienes y servicios en beneficio de las poblaciones locales (ver numeral 3.5 Análisis de impactos; Sistema Bótiaco; Diversidad Biológica, Ecosistemas marino-costero).

 b) No se propicia la conservación de los ecosistemas que conforman el bosque anegado, los sistemas de agua dulce y salobre, los manglares, la playa y desembocaduras de ríos principales y el sistema marino integrado, el cual permite los procesos reproductivos de especies nativas, migratorias y el crecimiento de poblaciones tales como los arrecifes de coral y los pastos marinos, por lo que contraviene el segundo objetivo de esta ley (ver numeral 3.5 Análisis de impactos; Sistema Bótiaco; Diversidad Biológica, Ecosistemas marino-costeró).

 c) Los beneficios planteados en la propuesta del proyecto no son de carácter integral quedando al margen de permitir el desarrollo sostenible para la región, tal como se estableció en la Alianza Centroamericana para el Desarrollo Sostenible -ALIDES 4, por lo que contraviene el tercer objetivo (ver numeral 3.5 Análisis de impactos).

Aunque el proyecto de la infraestructura de construcción se encuentra en un estado inicial, la entidad del Convenio de la Zona de Desarrollo Especial Marítima, por lo que no está directamente vinculado a la legislación de esta plataforma portuaria, se ha tomado la decisión de implementar el proyecto con la aprobación de la población local, con el objetivo de proteger la biodiversidad marina y la integridad de los ecosistemas acuáticos.

La infraestructura a implementar por este mapeo proyectado no va a afectar solo a la población local, sino también a las comunidades locales en lo que respecta a su vidas cotidianas y sus costumbres.

El expediente no incluye una descripción específica de las actividades a realizar ni de los impactos ambientales potenciales del proyecto, por lo que no se pueden realizar un análisis preliminar de impactos y riesgos ambientales, lo que podría afectar la integralidad de los ecosistemas.

En el marco del estudio realizado por el Convenio de la Zona de Desarrollo Especial Marítima, se han realizado una serie de acciones para garantizar la continuidad y la viabilidad de los proyectos, que incluyen el establecimiento de límites y la realización de estudios ambientales previos.

El proyecto propuesto se realizó en un estado inicial, con el objetivo de proteger la biodiversidad marina y la integridad de los ecosistemas acuáticos. Se ha hecho hincapié en la necesidad de realizar un análisis ambiental previo para garantizar la continuidad y la viabilidad de los proyectos, que incluyen el establecimiento de límites y la realización de estudios ambientales previos.
viabilidad del proyecto y que tenga una metodología para evaluación de ubicación del trayecto del corredor interoceánico.

- De la misma manera que el punto anterior, debe contemplarse dentro del Estudio de Factibilidad, un Análisis de Gestión Riesgo en Proyectos de Inversión Pública de acuerdo a metodología establecida en la Secretaría de Planificación y Programación de la Presidencia -SEGEPLAN-, enfocado en todas las fases del proyecto.

La presente opinión del CONAP contempla los requisitos básicos para poder empezar la revisión del expediente y análisis de cómo las actividades del proyecto afectarán al SIGAP, más no indica una autorización expresa.

5. REFERENCIAS

- Constitución de la República de Guatemala.
- Decreto número 68-86 del Congreso de la República de Guatemala, "Ley de Protección y Mejoramiento del Medio Ambiente".
- Decreto número 4-89 del Congreso de la República de Guatemala, “Ley de Áreas Protegidas” y sus reformas.
- Decreto número 23-2005 del Congreso de la República de Guatemala, "Ley que Declara Área Protegida el Refugio de Vida Silvestre Punta de Manabique".
- Decreto número 101-96 del Congreso de la República de Guatemala, "Ley Forestal".
- Convenio sobre la Diversidad Biológica suscrito por Guatemala el 13 de junio del año de 1992 en la Conferencia de las Naciones Unidas sobre Medio Ambiente y Desarrollo, también conocida como la "Cumbre de la Tierra" en Río de Janeiro, Brasil y ratificado por el Congreso de la República de Guatemala mediante Decreto Legislativo 5-95.
- Acuerdo Gubernativo número 759-90 de la Presidencia de la República de Guatemala, "Reglamento de la Ley de Áreas Protegidas".
Universidad del Valle de Guatemala (UVG); Consejo Nacional de Áreas Protegidas (CONAP); Instituto Nacional de Bosques (INAB); Universidad Rafael Landívar (URL). 2011. Mapa de cobertura forestal de Guatemala 2010 y dinámica de la cobertura forestal 2006-2010. Guatemala. 111 p.

Secretaría de Planificación y Programación de la Presidencia -SEGEPLAN-; Normas SNIP -Sistema Nacional de Inversión Pública- para Proyectos de Inversión Pública; Guatemala, enero de 2,013.

Secretaría de Planificación y Programación de la Presidencia -SEGEPLAN-; Análisis de Gestión Riesgo en Proyectos de Inversión Pública: Guía de Aplicación para Proyectos que forman Capital Fijo; Guatemala, enero de 2,013.

- Marine SpacialEcoloy Lab, University of Queensland, Australia; http://www.marinespatialecololab.org/research/fish-ecology/

